by Use someone else's name June 20, 2023
Get the Fast food Mommies mug.The fast growing hierarchy (shortened to FGH) is a method of defining large numbers. It takes in two inputs.
We define f(0,n) = n+1. For example: f(0,3) = 4. Next step is iteration. f(1,n) is f(0,f(0...f(0,n)...)) where f(0,...) is iterated n times. For example, f(1,2) = f(0,f(0,2)) = 4. Same rules for f(m,n).
Now let's define what ordinals are. Very simplified, they're a kind of infinity.
Consider this: |||....|
This has infinite sticks, but there's a 1st stick, 2nd stick... the last stick is the ωth stick. You can have ω+1, ω+2, ω+3 etc too. For our purposes, a limit ordinal is an ordinal that has no finite part at the end (so ω+3 is not a limit ordinal but ω×3 is.).
So how can we use this within FGH? We need to define a fundamental sequence (FS). An FS is the steps we take to reach a new limit ordinal. So the FS for ω is 0,1,2... and for ω×2 it's ω,ω+1,ω+2...
We can write this as: ωn = n, ω×2n = ω+n, ω^2n = ω×n and so on. There are more ordinals, but it'll do for our purposes.
This is not the only system for an FS. There's more, but I cannot fit it in an entry.
Now consider an ordinal α. Now FGH can be defined concretely:
for f(α,n):
if α is 0, it is n+1.
if α is not a limit ordinal, it is f(α-1,f(α-1...f(α-1,n)...)) where f(α-1,...) is iterated n times.
if α is a limit ordinal, it is f(αn,n).
Let's do an example: f(ω,3) = f(3,3) = f(2,f(2,f(2,3))). I know that f(2,n) = n×2^n, so it's 1.804356 × 10^15151336, which is HUGE! Imagine how large f(ω,10) is.
We define f(0,n) = n+1. For example: f(0,3) = 4. Next step is iteration. f(1,n) is f(0,f(0...f(0,n)...)) where f(0,...) is iterated n times. For example, f(1,2) = f(0,f(0,2)) = 4. Same rules for f(m,n).
Now let's define what ordinals are. Very simplified, they're a kind of infinity.
Consider this: |||....|
This has infinite sticks, but there's a 1st stick, 2nd stick... the last stick is the ωth stick. You can have ω+1, ω+2, ω+3 etc too. For our purposes, a limit ordinal is an ordinal that has no finite part at the end (so ω+3 is not a limit ordinal but ω×3 is.).
So how can we use this within FGH? We need to define a fundamental sequence (FS). An FS is the steps we take to reach a new limit ordinal. So the FS for ω is 0,1,2... and for ω×2 it's ω,ω+1,ω+2...
We can write this as: ωn = n, ω×2n = ω+n, ω^2n = ω×n and so on. There are more ordinals, but it'll do for our purposes.
This is not the only system for an FS. There's more, but I cannot fit it in an entry.
Now consider an ordinal α. Now FGH can be defined concretely:
for f(α,n):
if α is 0, it is n+1.
if α is not a limit ordinal, it is f(α-1,f(α-1...f(α-1,n)...)) where f(α-1,...) is iterated n times.
if α is a limit ordinal, it is f(αn,n).
Let's do an example: f(ω,3) = f(3,3) = f(2,f(2,f(2,3))). I know that f(2,n) = n×2^n, so it's 1.804356 × 10^15151336, which is HUGE! Imagine how large f(ω,10) is.
by cyclopentane December 1, 2022
Get the Fast Growing Hierarchy mug.by Zde829 December 26, 2021
Get the Gotta Go Fast mug.Gratification of a deeper need, but neither nourishing nor filling. Causes regret, self-loathing and massive weight gain in the long run.
by KB Allstar August 9, 2012
Get the Fast Food Relationships mug.When you and your spouse say you are going to eat healthy together and then one of you eats fastfood in secret
by Glenydotcom2 May 1, 2018
Get the fast food adultery mug.by BigZac April 28, 2016
Get the fast forward equity mug.McDonalds- Crappy burgers, good shakes, and amazing fries.
Burger King- Amazing burgers, good shakes, crappy fries.
Wendy’s- Crappy Burgers, Crappy Shakes, Crappy fries
Burger King- Amazing burgers, good shakes, crappy fries.
Wendy’s- Crappy Burgers, Crappy Shakes, Crappy fries
by ESBirdnerd December 5, 2020
Get the Fast Food Restaurant mug.