Top Definition
In calculus, the chain rule is used to differentiate compositions of functions. It states that for any function f which is dependent on a variable u, and u is a function of a second variable x, then f is a function of x.

In Set Theory:

f(u)=u V u(x)=x V Vf(x)

In Calculus:

df/dx = du/dx(dx/du)
to differentiate (x+1)^2, one could multiply this out and apply the sum rule (derivative of a sum is the sum of the derivatives); but what if it were (x+1)^55? Suddenly the multipling out doesn't look so nice. To apply the chain rule, we must first define the functions. Let f(x)=(x+1)^55 and u=(x+1). Therefore f(x)=u^55. By the chain rule:
df/dx = df/du(du/dx)
df/dx = d/du(u^55)(du/dx)
df/dx = 55u(du/dx)
We earlier defined the variable "u" as (x+1). Now we substitute this in.
df/dx = 55(x+1)d/dx(x+1)
df/dx = 55x+55(1)
df/dx = 55x+55
by Gladwarez July 10, 2006
Free Daily Email

Type your email address below to get our free Urban Word of the Day every morning!

Emails are sent from We'll never spam you.